WaterHeaterLosses

Analysis Methodology

- HWSIM used to model standard piping layouts, parallel piping, and pipe insulation
- Assumptions consistent with 1991 study
- Process:
 - Select prototype houses (960 3080 ft²)
 - Lay out systems (pipe sizing, lengths)
 - Build up fixture loads (to meet recovery load target)
 - Evaluate performance

Prototypes

DHW Distribution System Multipliers

ResidentialDraws

Table 1: Summary of DHWUse Quantities

		Assumed Use	Gallons of 135°F
Use Point	Volume (gals)	Temperature (°F)	Water per draw
Kitchen—1 gal draw	1.0	105	0.57
Kitchen – 3 gal draw	3.0	105	1.71
Lavatory	0.7	105	0.40
Shower-10 gal	10.0	105	5.71
Shower-20 gal	20.0	105	11.43
Dishwasher	10.8	135	10.80
Clothes washer*	9.1	135	9.10
Regular bath	35.0	105	20.00
Whirlpool bath	50.0	105	28.57

^{*} assumes a mix of hot/warm/cold cycles; based on 20% horizontal axis penetration

HW SIM Results

Figure 1: HWSIM Results Summary

DHW Distribution System Multipliers California Energy Efficiency Standards 2005

Recomm ended Base Distribution Losses

Figure 2: Proposed DL Relationship to Floor Area

SD LM >> to be calculated for all systems
based on floorarea & number of stories

Table 2: Proposed Standard Distribution Loss Multipliers

Distribution System Type	Single Family SDLM*
"Standard" one-story	1.18 - 1.33
"Standard" two-story	1.07 - 1.19
Point of Use (POU)	1.00

^{*} range shown for floor areas of 1,000 and 2,500 ft²

Recirculation Systems

- External Calculations
- Use 3,080 prototype with actual recirculation system layout
- Concentric pipe heat loss calculation
- Evaluate:
 - Continuous recirculation
 - Timer only and temperature only controls
 - Combined timer/temperature
 - Demand control

DSM >> modifies Standard distribution loss

Table 3: Proposed Distribution System Multipliers

Table 5. Troposed Distribution System Waitiphers			
Distribution System Measure	Single Family DSM		
Pipe Insulation (all lines)	0.79		
Pipe Insulation (kitchen lines)	Mandatory Measure		
Parallel Piping	0.88		
Recirculation (no control)	Not allowed		
Recirc + timer control	2.54		
Recirc + temperature control	3.14		
Recirc + timer/temperature	2.09		
Recirc + demand control	1.10		

Calculation Procedures

Distribution Loss Multiplier (DLM) =

 $1.0 + ((SDLM - 1) \times DSM)$

Adjusted Recovery Load =

SEU x DLM x Solar Savings Multiplier